skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Woods, Taylor"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Individual size distributions (ISDs) are prominent in ecological research and may support resource managers with ecosystem-scale objectives. We use a database of individual size measurements for US stream fishes to test for direct and indirect effects of traits, flow regimes, and land use on the interspecific ISD exponent. Path analysis indicates that traits have strong, direct effects on ISD. Flow and land use effects on the exponent are largely indirectly mediated by their influences on species traits. ISD exponents increase (abundances of larger-bodied individuals increase, relative to smaller-bodied) when environments favor higher trophic levels, warmer thermal tolerances, and periodic life histories. Alternatively, ISD exponents decrease in systems that favor opportunistic life histories. Our flexible modeling framework that includes direct and indirect effects of traits, flow regimes, and land use on ISD could be expanded to incorporate additional variables that interact with flow (e.g., temperature and physical habitat) to assess of effects of multiple stressors on aquatic ecosystem functioning. 
    more » « less
    Free, publicly-accessible full text available December 19, 2026
  2. Free, publicly-accessible full text available September 24, 2026
  3. 1. Global change may cause widespread phenological shifts. But knowledge of the extent and generality of these shifts is limited by the availability of phenological records with sufficiently large spatiotemporal extents. Using North American odonates (damselflies and dragonflies) as a model system, we show how a combination of natural history museum and community science collections, beginning in 1901 and extending through 2020, can be leveraged to better understand phenology. 2. We begin with an analysis of odonate functional traits. Principal coordinate analysis is used to place odonate genera within a three-dimensional trait ordination. From this, we identify seven distinct functional groups and select a single odonate genus to represent each group. Next, we pair the odonate records with a list of environmental covariates, including air temperature and degree days, photoperiod, precipitation, latitude and elevation. An iterative subsampling process is then used to mitigate spatiotemporal sampling bias within the odonate dataset. Finally, we use path analysis to quantify the direct effects of degree days, photoperiod and precipitation on odonate emergence timing, while accounting for indirect effects of latitude, elevation and year. 3. Path models showed that degree days, photoperiod and precipitation each have a significant influence on odonate emergence timing, but degree days have the largest overall effect. Notably, the effect that each covariate has on emergence timing varied among functional groups, with positive relationships observed for some group representatives and negative relationships observed for others. For instance, Calopteryx sp. emerged earlier as degree days increased, while Sympetrum sp. emerged later. 4. Previous studies have linked odonate emergence timing to temperature, photoperiod or precipitation. By using natural history museum and community science data to simultaneously examine all three influences, we show that systems-level understanding of odonate phenology may now be possible. 
    more » « less
  4. The size spectrum is an inverse, allometric scaling relationship between average body mass (M) and the density (D) of individuals within an ecological community or food web. Importantly, the size spectrum assumes that individual size, rather than species’ behavioral or life history characteristics, is the primary determinant of abundance within an ecosystem. Thus, unlike traditional allometric relationships that focus on species-level data (e.g., mean species’ body size vs. population density), size spectra analyses are ‘ataxic’ – individual specimens are identified only by their size, without consideration of taxonomic identity. Size spectra models are efficient representations of traditional, complex food webs and can be used in descriptive as well as predictive contexts (e.g., predicting responses of large consumers to changes in basal resources). Empirical studies from diverse aquatic ecosystems have also reported moderate to high levels of similarity in size spectra slopes, suggesting that common processes may regulate the abundances of small and large organisms in very different settings. This is a protocol to model the community-level size spectrum in wadable streams. The protocol consists of three main steps. First, collect quantitative benthic fish and invertebrate samples that can be used to estimate local densities. Second, standardize the fish and invertebrate data by converting all individuals to ataxic units (i.e., individuals identified by size, irrespective of taxonomic identity), and summing individuals within log2 size bins. Third, use linear regression to model the relationship between ataxic M and D estimates. Detailed instructions are provided herein to complete each of these steps, including custom software to facilitate D estimation and size spectra modeling. 
    more » « less